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ABSTRACT: Deep learning (DL) is becoming more popular as a useful tool in various scientific domains, especially in chemistry
applications. In the infrared spectroscopy field, where identifying functional groups in unknown compounds poses a significant
challenge, there is a growing need for innovative approaches to streamline and enhance analysis processes. This study introduces a
transformative approach leveraging a DL methodology based on transformer attention models. With a data set containing
approximately 8677 spectra, our model utilizes self-attention mechanisms to capture complex spectral features and precisely predict
17 functional groups, outperforming conventional architectures in both functional group prediction accuracy and compound-level
precision. The success of our approach underscores the potential of transformer-based methodologies in enhancing spectral analysis
techniques.

■ INTRODUCTION
Functional groups serve to identify the physical properties
including boiling point,1 melting point,2 solubility,3 and
viscosity4 of chemical compounds. By recognizing functional
groups, researchers can classify and categorize compounds,
aiding in their characterization and identification.5 In the field
of medicinal chemistry, functional groups play a critical role in
determining a compound’s biological activity and pharmaco-
logical properties.6 Specific functional groups might impart
desirable therapeutic effects or influence the compound’s
interaction with biological targets.7 Understanding these
relationships is essential for drug design and optimization. In
polymer chemistry, by controlling the types and distribution of
functional groups, researchers can tailor their mechanical,
thermal, and chemical properties for specific applications, such
as in materials science, engineering, and biomedicine.8−10

Knowledge of functional groups is thus essential for under-
standing and predicting the behavior of substances in various
environments.
Functional groups are specific arrangements of atoms within

a molecule that give the compound its unique chemical

characteristics.11 Infrared (IR) spectroscopy is a widely used
qualitative and quantitative analytical method utilized for the
identification and characterization of chemical compounds,
relying on their molecular vibrations.12 When a sample is
exposed to infrared radiation, certain wavelengths are
selectively absorbed by its chemical bonds, causing transitions
between quantized vibrational energy levels.13 Even at the
lowest energy state, known as the zero point energy, molecular
bonds possess intrinsic vibrational energy.14 The absorption of
infrared radiation provides the exact amount of energy
required to elevate the molecule from a lower vibrational
state to a higher one.15 Each type of chemical bond has a
characteristic vibrational frequency associated with it, corre-
sponding to the energy difference between these quantized
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levels.16 This characteristic absorption allows IR spectroscopy
to detect and analyze the structural features of organic
compounds effectively.15

The IR spectra produced from IR spectroscopy are typically
investigated by manually marking all relevant peaks corre-
sponding to specific functional groups. Even with the expertise
of researchers and the assistance of available documents, this
manual procedure is time-consuming, especially in the case of
complex compounds. Moreover, various physical and chemical
factors that affect the sample’s constituents may cause changes
in the structural environment of specific functional groups,

leading to notable deviations in those groups’ typical peak
frequencies from their representative ranges.17 There might be
an overlap phenomenon in the fingerprint region (400−1500
cm−1) of most IR spectra. Because each material’s distinctive
properties are contained in this frequency band, it becomes
much more difficult for researchers to identify specific peaks
and corresponding functional groups. To reduce the
inefficiency of manual interpretation, the computer and AI-
aided approach such as innovative deep learning (DL) is
suggested when analyzing the IR spectra.

Figure 1. Distribution of (A) training data set, (B) validation data set, and (C) test data set.
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DL is a subset of machine learning that harnesses neural
networks to process data like human brains. These computer
models are trained to extract features from raw data and make
predictions and classifications. DL models can be trained in
chemistry to predict the presence or absence of specific
functional groups in chemical compounds based on IR
spectra.18 This is particularly useful when dealing with complex
spectra with multiple overlapping peaks.19 Recently, several
studies were reported using DL models to investigate the IR
spectra. The most successful and efficient model presented in
this field is the convolutional neuron network (CNN) or
CNN-based model,18−27 recognized for its remarkable efficacy
in predicting functional groups. However, evaluating these
models solely based on functional group prediction precision
may lead to an incomplete assessment. It is imperative to also
consider the accuracy of the model in predicting entire
molecules. This consideration arises from data imbalance
issues, where certain functional groups are more prevalent than
others within the data set. To illustrate, if a molecule comprises
five functional groups and a model accurately predicts four out
of the five, conventional accuracy metrics may suggest an 80%
success rate. However, from the perspective of predicting the
entire molecule, the accuracy would be 0%. This underscores
the need for a more comprehensive evaluation framework
encompassing functional group prediction precision and
compound-level accuracy.
In recent years, transformer models have emerged as the

cornerstone of various machine learning applications, revolu-
tionizing the field with their remarkable capabilities in handling
diverse data types such as signals, images, speech, and text.28

The transformer architecture, initially introduced for natural
language processing tasks,29 has showcased exceptional
performance across various domains, including translation,30,31

time series forecasting,32−34 and signal classification.35−39

Overview of the existing landscape of machine learning models
for functional group characterization, traditional models, such
as 1D-CNNs, recurrent neural networks (RNNs),40 and long
short-term memory,41 have historically dominated functional

group analysis tasks.19,27,36,42−47 Despite these achievements,
there remains a noticeable gap in the literature regarding the
application of transformer models to chemical spectra signals,
particularly in the functional group characterization data sets.
To explore the potential benefits and challenges associated

with adopting transformer approaches in this domain, an
attention-based transformer model was utilized for predicting
the function groups within IR spectra. The architecture of the
transformer model, encompassing 17 multilabel functional
groups as inputs, is depicted in Figure 1. The model’s
performance was evaluated by assessing both the accuracy of
functional group predictions and the precision of compound-
level predictions.

■ MATERIALS AND METHODS
Data Collection and Functional Groups Assignment.

We obtained the FTIR absorbance spectra for all compounds
from the National Institute of Standards and Technology
(NIST) Chemistry WebBook.48 These spectra were initially
downloaded in the JDX format and subsequently converted to
XY files. Finally, all converted spectra were consolidated and
stored in a single CSV file, as per the specifications outlined in
a species file. We match the ID of each compound to the
IUPAC InChi strings by using the PubChem API.49

Substructure matching was afterward carried out by RDKit
on each string to determine whether a predetermined
compound topology was present.50 Each SMARTS string was
tested independently and if a match was found, the functional
group was classified as belonging to the corresponding
compound. Another group of spectra�an external data
set�including 17 spectra was downloaded from the Emission
Measurement Center Spectral Database. All spectra were
processed the same way as those from the NIST Chemistry
WebBook.
Framework. Figure 2 depicts the comprehensive FITR

functional groups classification flowchart, encompassing the
preparation of input spectra, data segmentation into functional
groups within a single molecule, training-validation-testing data

Figure 2. Process for classifying FTIR spectra using two models, one based on convolutional neural network (IRCNN) and the other on
transformer architecture.
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splicing, utilization of a DL network, optimization of
hyperparameters, model comparison, postprocessing, and the
deployment of the model. First, the spectra, initially presented
in XY format within a CSV file, underwent conversion into a
unified 1D-array data set in NumPy format. Each data was then
paired with a corresponding text annotation file. To ensure
uniformity, all spectra were standardized to a consistent set of
feature points (3600 points spanning the range from 400 to
4000 cm−1) by employing the linear interpolation method, as
defined in eq 1. The spectra data concerning the number of
functional groups that existed in each molecule were also
investigated. The maximum number of functional groups in a
single molecule is seven, and the distribution of each group
reveals an imbalance, as illustrated in Figure S1A−C. Spectra
were then segmented into seven groups to address this
imbalance. This method ensures that models are trained and
evaluated on data sets accurately representing the distribution
of functional groups, thereby promoting a more balanced data
set regarding the number of functional groups per molecule.51

Subsequently, all groups were randomly partitioned into
training, validation, and test sets with allocation ratios of 75,
15, and 10%, respectively. During the training process, input
spectra values were scaled to a range of 0 to 1 using the min−
max normalization method, ensuring consistent data scales.
We conducted a multilabel classification with 17 classes of

functional groups, assessing the performance of both the
CNN-based model27 (specifically IRCNN, a published model)
and our proposed transformer-based model based on the test
set. The external data set was used to further evaluate our
model’s reliability. Two classical machine learning classifiers:
decision trees (DTs) and K-nearest neighbors (KNN) were
also used to compare with our proposed model.

y y
x x y y

x x

( )( )
1

1 1 2

2 1
= +

(1)

where x1, y1 represent the coordinates of the left position, x2, y2
represent the coordinates of the right position, x is the
interpolation point and y denotes the interpolated value.
DL Model. Irchracterization Convolutional Neural Net-

works. The irchracterization convolutional neural networks

(IRCNN)27 is a DL method proposed for identifying
functional groups within organic molecules. Unlike other
approaches that utilize artificial neural networks, IRCNN
employs sliding convolutional filters with a shared-weight
architecture across input features, resulting in translational
equivariant responses referred to as feature maps. In this
research, we chose to reimplement the IRCNN model, which
offers a novel spectral interpretation approach. The IRCNN
architecture is composed of two convolution blocks, one
flattened layer, three dense layers, and one activation layer. We
utilized PyTorch to carry out the reimplementation while
maintaining all parameters consistent with the original paper,
as detailed in both the paper itself and a provided GitHub link
at https://github.com/gj475/irchracterizationcnn. Each con-
volution block consists of a dense convolution layer, batch
normalization, ReLU activation, and a max-pooling layer. In
the activation layer, unlike typical classification tasks, the
spectra signal corresponds to multiple class labels. Con-
sequently, the authors opted for sigmoid activation instead of
softmax activation to accommodate these multilabel class
labels. The IRCNN architecture is shown in Figure 3.

Transformer Architecture. We propose an approach that
directly adapts the full transformer architecture,29 initially
designed as a neural machine translation model. This model is
particularly effective for handling sequential data through the
aiding of attention mechanisms.52 The transformer network
utilizes fundamental concepts of an encoder-decoder archi-
tecture, with each block incorporating simple word embed-
dings, attention mechanisms, and softmax. It avoids the
structural complexities present in RNNs or CNNs. The
encoder extracts features from an input sequence, while the
decoder utilizes these features to generate an output sequence.
In this study, our primary objective is spectra classification.
Therefore, we opted to implement only the encoder part,
which is designed to learn embeddings suitable for the efficient
classification task. The encoder component in transformer
architecture plays a vital role in comprehending and extracting
relevant information from the input sequence. Over the years,
numerous encoder-only architectures have been utilized,
drawing inspiration from the encoder module of the original

Figure 3. IRCNN architecture.
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transformer model. Examples include BERT (bidirectional
encoder representations from transformers),53 RoBERTa (a
Robustly optimized BERT pretraining approach),54 and ViT
(vision transformer).55 These architectures have been
instrumental in advancing various classification domains.
Despite the transformer architecture’s emergence as state-of-
the-art (SOTA) for natural language processing and vision
tasks, its application to chemical signals has remained limited.
In this study, we introduced a transformer model (Fcg-former)
(Figure 4A) inspired by the transformer encoder architecture
and the ViT model. By adapting this architecture to process
sequences of signal patches, our approach has shown
outstanding performance on spectra classification tasks.
Leveraging attention mechanisms, Fcg-former achieves re-
markable results compared to SOTA convolutional networks
trained on the same resources. The overall architecture of Fcg-
former is shown in Figure 4.
Self-attention (Figure 4B) is a crucial mechanism utilized in

transformer encoders, enabling the model to focus on different
parts of the input sequence when processing each element-
(token). The self-attention mechanism generates three
versions of the input embeddings: queries, keys, and values.
These are linear projections of the original embeddings and are
used to calculate attention scores. Attention scores, represent-
ing the importance or relevance of each patch sequence to the
current patch, are computed by taking the dot product of a
query with the keys. The softmax function is then applied to
the attention scores to convert them into probabilities,
ensuring that the attention weights sum up to 1 and indicating
the relative importance of each element signal. Following the
softmax operation, the model calculates a weighted average of
the value vectors associated with all patch sequences. These
weights are determined by the softmax probabilities obtained
earlier, ensuring that patches deemed more pertinent to the

current signal contribute more significantly to the final output.
The resulting vector represents a signal-aware representation of
the current patch, considering its relationship with other patch
signals in the sequence. By applying self-attention to the
spectra signal, the transformer model can capture depend-
encies between different patches in the input sequence and
learn to focus on the most relevant patches for each position,
which aids in understanding the signal and improves
classification accuracy.

Q K V
QK

d
VAttention( , , ) softmax

T

k
=

i
k
jjjjjj

y
{
zzzzzz (2)

To effectively process the spectral signal data while ensuring
consistent input size and facilitating tokenization for
subsequent processing, each signal is first resized to a fixed
signal length of 1024. Subsequently, the signal is divided into a
sequence of fixed-size non-overlapping patches. These patches
are then linearly embedded into tokens, which serve as the
input to the Fcg-former model. Like BERT and ViT
architectures, an additional learnable token known as the
[class] token is introduced to act as the representation of the
entire input signal. This token is utilized to capture global
information and understanding of the signal, which proves
beneficial for various tasks such as classification. It typically
serves as the input to the classification head located at the
output of the transformer encoder block. Each token, including
an additional special token [class], is assigned learnable
position embeddings. These position embeddings play an
essential role in transformer-based architecture, which encodes
the positional information on each token within the sequence
by a unique sinusoidal extrapolability, allowing the model to
understand the relative positions of tokens. However, static
(not trained) value does not always perform well, due to the

Figure 4. Transformer-based model: (A) Fcg-former architecture; (B) transformer encoder block with the self-attention mechanism; (C)
classification head.
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lack of learnability and flexibility,56 most pretrained language
models57 utilize learnable (trainable parameters) vector
embedding. Subsequently, the sequence of vectors, comprising
both the token embeddings and their corresponding position
embeddings, is input into a transformer encoder. This encoder
processes the input sequence, leveraging self-attention
mechanisms to capture dependencies between patches and
generate representations for each token in the sequence. A
classification head is responsible for producing the final
classification output, the class token (*) plays a crucial role
in this process (Figure 4C). This additional learnable token is
appended to the input sequence and does not correspond to
any specific patch of spectrum in the input. Each layer of the
transformer encoder processes the tokens, updating their
representations. The class token is initialized as a fixed-size and
learnable vector, which matches the embedding dimensions of
the model. After passing through the final layer of the
transformer encoder, the class token holds a comprehensive
representation of the entire input sequence. This representa-
tion is then used by the classification head to produce the final
output. Hyperparameter tuning was conducted using Neural
Network Intelligence,58 aiming to optimize parameters within a
transformer architecture, specifically focusing on patch size,
layer count, and attention head count. This process goal was to
identify the optimal configurations for these parameters that
would lead to improved performance or efficiency in the given
task or model architecture. The top-performing model,
characterized by a signal size of 1024, patch size of 16, 2
layers, an embedded dimension of 768, and 4 attention heads,
was chosen for evaluation on an independent test data set.
Training Methods. Both IRCNN and Fcg-former utilized

the same training parameters during the evaluation of their
performance. This consistency ensures a fair comparison
between the two models, as they are trained under similar
conditions, allowing for a more accurate assessment of their
relative effectiveness in handling the given task or data set. The
learning rate was set to 0.002, employing the Adam optimizer
algorithm59 and a cosine annealing warm restarts60 learning
rate scheduler, with the number of iterations set to 600 epochs.
To mitigate overfitting, the training code was configured for
early stopping if the model’s loss on the validation set did not
improve for the subsequent 10 patience epochs. Furthermore,
the best weights of the model built at each iteration were
retained if they achieved the minimum validation loss. Various
activation functions are employed in neural networks, with the
selection often influenced by the network’s architecture and its
predictive accuracy. In the context of multilabel classification,
we opted for the Sigmoid function. This function is capable of
transforming values into a range of 0 to 1 for each class, which
could be defined as z( ) 1

1 e z= + , which aligns well with the
multilabel classification task. For training the model, we
utilized the weighted binary cross-entropy loss function (L)
(eq 3). This choice has shown superior performance in
handling the imbalanced data set in infrared spectra signal
classification when using CNN networks.27

L
N

Wy y y y1
log( ) (1 )log(1 )

i

N

i i i i i
1

= +
= (3)

where N is the number of classes, Wi, yi, and yi correspond to
weight, the ground truth value, and the predicted value for
class i.

To address potential overfitting caused by the limitations of
spectral signals, various data augmentation techniques were
exclusively applied to the training data set. These techniques
encompassed the addition of random noise within a signal-to-
noise ratio (SNR) range of 2 to 20 dB (dB), random vertical
shifts with a 0.3 probability, and random masking of signal
portions with zeros, also with a 0.3 probability. It is crucial to
highlight that none of these augmentation processes were
extended to the validation and testing data sets, ensuring an
unbiased evaluation of the model’s performance on unseen
data, thereby preserving its generalization capability.
In implementing DL approaches, PyTorch was the frame-

work of choice. The hardware platform employed in this study
consisted of a high-performance computer equipped with eight
Intel Core i7-12700F processors running at 4.0 GHz, along
with a high-speed graphics computing unit NVIDIA GeForce
RTX 2060 with 12 GB of graphic memory. The networks were
configured using Python 3.9 within an Anaconda environment,
with PyTorch 2.0 serving as the backend for model
development and training. This setup provided the necessary
computational resources and software environment to conduct
the experiments effectively.
Evaluation Metrics. Various metrics have been employed

to assess the performance of the proposed DL models for
functional group prediction. Accuracy serves as a comprehen-
sive measure of the model’s correctness, providing an overview
of its success rate in identifying functional groups. Precision,
particularly crucial in scenarios where false positives are costly,
ensures the accuracy and trustworthiness of identified
functional groups. In functional group prediction, recall reflects
the model’s effectiveness in capturing all occurrences of each
functional group, thereby ensuring comprehensive coverage
and preventing the oversight of critical information. The F1-
score is a commonly used metric in classification tasks and it
considers both precision and recall, providing a balanced
measure of a model’s performance. In data sets where certain
functional groups are more prevalent than others, class
imbalance can affect the interpretation of traditional accuracy
metrics. The F1-score, being based on both precision and
recall, is less sensitive to class imbalance and provides a more
robust evaluation of model performance in such scenarios.
Moreover, the exact match ratio (EMR) evaluates the model’s
precision in identifying all functional groups within a molecule,
offering a strict criterion for performance assessment. EMR is
particularly vital in applications necessitating precise identi-
fication of functional groups, such as drug discovery or material
science. These metrics collectively contribute to the thorough
evaluation of the model’s efficacy in functional group
prediction. The formulas of these metrics (accuracy, precision,
recall, F1-score, and EMR) are as follows eqs 4−8.

Accuracy
TP TN

TP TN FP FN
= +

+ + + (4)

Precision
TP

TP FP
=

+ (5)

Recall
TP

TP FN
=

+ (6)

F1
2 precision recall

precision recall
= × ×

+ (7)
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where TP, TN, FP, FN represent the number of true positive,
true negative, false positive, and false negative samples,
respectively.

n
I Y YEMR

1
( )

i

n

i i
1

= =
= (8)

where n is the number of testing signals, Yi and Yi are true
labels and predicted labels for spectral i.

■ RESULTS AND DISCUSSIONS
Training Results. The data set was randomly divided into

three subsets: training (75%), validation (15%), and testing
(10%), facilitating rigorous investigation into the training and
evaluation of the proposed DL models. Following training and
hyperparameter tuning, the model underwent validation over
600 epochs. A conventional IRCNN model was trained and
validated in parallel with the proposed Fcg-former, enabling
direct comparison within the confines of the same data set. As
depicted in Figure 5, the loss function of the Fcg-former model
exhibits a reliable reduction indicative of optimal convergence,
whereas the IRCNN model stops training early under
predefined stopping criteria. The optimal epochs for Fcg-
former and IRCNN are identified at 585 and 115, respectively.
Prediction of Functional Groups. The ROC curve, PR

curve, and the overall functional group confusion matrix are
presented in Figure 6. The predictive outcomes of both
IRCNN, Fcg-former, DTs, and KNN models on the testing
subdata set were calculated based on the confusion matrices

and shown in Table 2. In terms of accuracy, both models
demonstrate high performance, with Fcg-former slightly
outperforming IRCNN by achieving an accuracy of 0.9715
compared to 0.9613. Both models also demonstrate strong
precision values, indicating high accuracy in positive
predictions (0.9355 versus 0.9396). However, the Fcg-former
model exhibits better recall (0.9227), capturing a higher
proportion of actual positive instances in the data set
compared to IRCNN (0.8754). The Fcg-former model’s
improved recall suggests its effectiveness in capturing a
broader range of functional groups within IR spectra,
potentially due to its attention architecture. The F1-score, a
harmonic mean of precision and recall, further confirms the
overall superior performance of Fcg-former, with a score of
0.929 compared to 0.9063 for IRCNN. Additionally, Fcg-
former demonstrates a higher EMR of 0.702 compared to
0.6249 for IRCNN, indicating its capability to accurately
predict all functional groups within a given molecule (Figure
7).
Furthermore, regarding resource management, despite Fcg-

former having significantly fewer trainable parameters
(6,210,065) compared to IRCNN (61,540,416), it still
achieves comparable performance. Also, Fcg-former requires
substantially less GPU RAM, with an estimate of 142 MB
compared to 1409 MB for IRCNN, making it more memory-
efficient. Notably, while IRCNN employs optimal threshold
tuning for individual functional groups, resulting in enhanced
accuracy evaluation, our study adopts a uniform threshold
(0.5) for all functional groups. This approach highlights the

Figure 5. (A)Validation loss during training of IRCNN and Fcg-former; (B) learning rate scheduler.
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reliability of our proposed Fcg-former attention model in
functional group prediction. Figures S2 and S3 show the
confusion matrix of individual functional group prediction
results of both models, revealing similarities to their overall
performance, and confirming the enhanced performance of
Fcg-former over IRCNN in predicting functional groups within
IR spectra analysis.
The conventional machine learning techniques DTs and

KNN also exhibit performance characteristics in the context of
functional group prediction. The functional group confusion
matrices for DTs and KNN are depicted in Figures 6E,F, S4,
and S5, while their compound-level confusion matrices are
illustrated in Figures 7C and 7D. DTs achieve an accuracy of
0.945, a recall of 0.8619, and a precision of 0.8625, resulting in
an F1-score of 0.8622. While DTs offer a balance between

Figure 6. ROC and PR curve of (A) the IRCNN model and (B) the Fcg-former; the functional group confusion matrix of (C) the IRCNN model,
(D) the Fcg-former model, (E) the DTs model, and (F) the KNN model performed on the test data set.

Table 1. Self-Attention Map Calculations

self-attention map calculation

input: input spectrum
output: self-attention map
for each patch in sequence:
for each attention head:

calculate query, key, and value for the current patch
calculate attention scores between the current patch and all
other patches
apply softmax to obtain attention weights
store attention weights for each patch

calculate mean attention scores across all attention heads
represent mean attention scores as a color map
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precision and recall, their EMR is relatively lower at 0.4941,
indicating moderate effectiveness in predicting all functional
groups within a molecule correctly. On the other hand, KNN
shows an accuracy of 0.9296, with a recall of 0.8698 and a
lower precision of 0.7607, leading to an F1-score of 0.8116.
The KNN model has an even lower EMR of 0.3151, suggesting
it struggles more with accurately identifying the full set of
functional groups. Overall, the DL models, IRCNN and Fcg-
former, significantly outperformed the classical machine
learning approaches, DTs, and KNN, particularly regarding
the EMR. This highlights the superior ability of DL techniques
to handle compound-level predictions, demonstrating a clear
advantage over traditional machine learning methods in
capturing the complexity of functional group identification.
The robustness of our models is evident in their perform-

ance on both the initial test data set and the external data set.
As shown in Figures S6, S7, and Table S1, while there is a
slight decrease in performance metrics when evaluated on the
external data set, the Fcg-former model consistently shows
better performance, indicating its stability and reduced

likelihood of overfitting compared to the classical machine
learning models. On the initial test data set, the Fcg-former
achieved the highest accuracy (0.9715) and EMR (0.702),
outperforming IRCNN, DTs, and KNN. On the external data
set, the Fcg-former maintained its superior performance with
an accuracy of 0.9585 and an EMR of 0.6471, demonstrating
its ability to generalize well to new data. The results indicate
that the DL models, particularly Fcg-former, exhibit robust
generalization capabilities without significant overfitting,
especially in dealing with complex compound-level predictions.
We believe these measures address the concern regarding data
set independence and provide a comprehensive assessment of
our models’ performance.
Self-Attention Map in Functional Group Prediction.

Figure 8 depicts an example of the attention map generated
during the processing of IR spectra and its corresponding
outputs. In the calculation process, attention scores are
computed for each patch in a sequence by comparing it to
all other patches. This is achieved by calculating the dot
product between the Query of the current patch and the Key

Table 2. IRCNN, Fcg-Former, DTs, and KNN Performance Summary on Test Data

accuracy recall precision F1-score EMR parameters GPU ram

IRCNN 0.9613 0.8754 0.9396 0.9063 0.6249 61,540,416 1409 MiB
Fcg-former 0.9715 0.9227 0.9355 0.929 0.702 6,210,065 142 MiB
DTs 0.945 0.8619 0.8625 0.8622 0.4941
KNN 0.9296 0.8698 0.7607 0.8116 0.3151

Figure 7. Compound-level functional group confusion matrix of (A) the IRCNN model, (B) the Fcg-former model, (C) the DTs model, and (D)
the KNN model performed on the test data set.
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of every other patch, followed by a softmax activation (as
depicted in eq 2). These attention scores, calculated for each
head, provide insight into the significance of different patches
with one another (Table 1). Upon examination, the attention
model demonstrates a notable focus on relevant peaks within
the spectra. The attention model accurately identifies the
strong absorption bands associated with the alcohol functional
group, particularly at 3600 cm−1. However, for groups such as
alkane and methyl, whose absorption bands overlap within the
2800−3000 cm−1 range, the attention transformer detects
these features less prominently, reflecting their weaker signals.
Moreover, the prominent peak observed at 1700−1750 cm−1,
revealing ester stretching vibrations and potentially carboxylic
acid groups, receives significant attention from the model.

During the training phase, the attention transformer algorithm
learns and defines the bonding interactions among various
functional groups. This acquired knowledge allows the model
to predict the potential presence of specific functional groups
within the unknown molecules.
Deployment of Fcg-Former. Fcg-former is an open-

source library dedicated to making strides in chemical signal
research accessible to the wider machine-learning community.
It offers meticulously designed FcgFormer architectures
through a unified API. Fcg-former emphasizes extensibility
for researchers, simplicity for practitioners, and efficiency and
reliability for tasks like fine-tuning and deployment.
Additionally, users can access the library and its associated

Hugging Face application, powered by Gradio, at https://

Figure 8. Self-Attention mechanism works on ethyl hydrogen fumarate compound. Each cell (patch index) in the figure reflects how attention
heads distribute their attention across different parts of the input. This visualization helps understand which patches receive more focus from
specific attention heads during the model’s processing.

Figure 9. Functional group prediction result performed on the web-based application.
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huggingface.co/spaces/lycaoduong/FcgFormerApp. The Hug-
gingFace App prediction result is shown in Figure 9. Other
examples of our model deployment were demonstrated in
Figures S8−S11.

■ CONCLUSION
In conclusion, this study presents a novel approach utilizing a
transformer attention model for the prediction of functional
groups in FTIR spectra. Our findings underscore the
importance of exploring cutting-edge DL techniques in
spectroscopy, paving the way for future research avenues
aimed at enhancing spectral analysis and interpretation. As the
field continues to evolve, integrating transformer-based models
into analytical workflows could lead to significant advance-
ments in compound characterization and identification. Our
model demonstrates better performance compared to conven-
tional CNN architectures, both in terms of functional group
prediction accuracy (0.9715 over 0.9613) and compound-level
accuracy (0.702 over 0.6249). The success of our transformer
attention model highlights the efficacy of self-attention
mechanisms in capturing intricate spectral patterns and
relationships, thus enabling more accurate predictions. Overall,
this work contributes to the ongoing convergence of artificial
intelligence and spectroscopic analysis, offering a robust
framework for accurate and efficient functional group
prediction in FTIR spectra.
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